
Dept. of Computer Science, Univ. of Texas at San Antonio, Tech. Report CS-TR-2010-001

Safe, Multiphase Bounds Check Elimination in Java

Andreas Gampe, David Niedzielski, Jeffery von Ronne, and Kleanthis Psarris
Department of Computer Science,

The University of Texas at San Antonio
{agampe,dniedzie,vonronne,psarris}@cs.utsa.edu

January 28, 2010

Abstract

As part of its type-safety regime, the Java semantics require precise exceptions
at runtime when programs attempt out-of-bound array accesses. This paper de-
scribes a Java implementation that utilizes a multiphase approach to identifying
safe array accesses. This approach reduces runtime overhead by spreading the
out-of-bounds checking effort across three phases of compilation and execution:
production of mobile code from source code, JIT compilation in the virtual ma-
chine, and application code execution. The code producer uses multiple passes
(including common subexpression elimination, load elimination, induction vari-
able substitution, speculation of dynamically-verified invariants, and inequality
constraint analysis) to identify and prove redundancy of bounds checks. During
class-loading and JIT compilation, the virtual machine verifies the proofs, inserts
code to dynamically validate speculated invariants, and generates code special-
ized under the assumption that the speculated invariants hold. At runtime, the
method parameters and other inputs are checked against the speculated invari-
ants, and execution reverts to unoptimized code if the speculated invariants do
not hold. The combined effect of the multiple phases is to shift the effort as-
sociated with bounds-checking array access to phases that are executed earlier
and less frequently, thus, reducing runtime overhead. Experimental results show
that this approach is able to eliminate more bounds checks than prior approaches
with minimal overhead during JIT compilation. These results also show the con-
tribution of each of the passes to the overall elimination. Furthermore, using our
multiphase bounds check elimination method increased the speed at which the
benchmarks executed by up to 16%.

1 Introduction

The semantics of the Java programming language require that out-of-bounds array
accesses be caught at run-time [32]. This can be achieved by performing a runtime
“bounds check” as part of each access to an array, but the overhead of doing so
can be quite substantial [36]. This performance overhead is caused not only by the
direct cost of conditional branches implementing the array bounds checks but also by
lost opportunities for optimization and parallelization due to Java’s precise exception
semantics.

This overhead can be reduced, however, by applying a static analysis that can
identify array element accesses that can never cause an out-of-bounds exception and

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
28 JAN 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Safe, Multiphase Bounds Check Elimination in Java

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Texas at San Antonio,Department of Computer Science,One
UTSA Circle,San Antonio,TX,78249

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
As part of its type-safety regime, the Java semantics require precise exceptions at runtime when programs
attempt out-of-bound array accesses. This paper describes a Java implementation that utilizes a
multiphase approach to identifying safe array accesses. This approach reduces runtime overhead by
spreading the out-of-bounds checking effort across three phases of compilation and execution production
of mobile code from source code, JIT compilation in the virtual machine and application code execution.
The code producer uses multiple passes (including common subexpression elimination, load elimination,
induction variable substitution, speculation of dynamically-verified invariants, and inequality constraint
analysis) to identify and prove redundancy of bounds checks. During class-loading and JIT compilation,
the virtual machine verifies the proofs, inserts code to dynamically validate speculated invariants, and
generates code specialized under the assumption that the speculated invariants hold. At runtime, the
method parameters and other inputs are checked against the speculated invariants and execution reverts to
unoptimized code if the speculated invariants do not hold. The combined effect of the multiple phases is to
shift the effort associated with bounds-checking array access to phases that are executed earlier and less
frequently, thus, reducing runtime overhead. Experimental results show that this approach is able to
eliminate more bounds checks than prior approaches with minimal overhead during JIT compilation.
These results also show the contribution of each of the passes to the overall elimination. Furthermore,
using our multiphase bounds check elimination method increased the speed at which the benchmarks
executed by up to 16%.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

42

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

JIT Compiler

Verifier
Annotation

Code Producer Code Consumer
(Virtual Machine)Java Source

Front End

SafeTSA Code

Optimizer Opt. SafeTSA

Constraint Analyzer Application Code

Speculation

Annotations

Figure 1: System Architecture

then optimizing the program by eliminating those unnecessary bounds checks. In
a language like Java, though, such an approach must be compatible with just-in-
time (JIT) compilation and other virtual machine features used to provide platform-
independence, dynamic class-loading, and safety. Optimizing during JIT compilation
constrains the time and scope available for analysis and thus limits bounds check
eliminations to those that can be determined to be redundant through simple in-
traprocedural analyses.

This paper describes a system that utilizes multiple passes operating at different
phases in the application code’s life-cycle, including code production (preparation of
the mobile code from source), JIT compilation-time, and method invocation-time, to
cooperatively provide precise-exception semantics for out-of-bounds array accesses.
The intuition behind this approach is that bounds checking effort is shifted to earlier
and less performance critical points of time in the software life-cycle compared to pure
runtime bounds checking. There are two major techniques that enable this phasing to
be done safely. First, a proof-carrying-code-style linear-inequality constraint frame-
work [56] allows the results of relatively expensive static analyses performed by the
code producer (including a linear-inequality constraint analyzer and induction vari-
able substitution analyzer) to be used safely by the time-constrained JIT compiler.
Second, runtime support for speculative specialization provides a mechanism for in-
cluding dynamic guards on sections of code and fall back to unoptimized code when
those guards fail. This allows code to be aggressively optimized under the assumption
that certain relationships hold among variables (which will be checked dynamically).
As shall be shown in the experimental results section, this combination allows more
bounds checks to be eliminated than was possible with prior methods based solely on
verifiable-annotation or JIT-time static analysis.

1.1 System Overview

Our system is built on top of the SafeTSA system [6], which in turn is built on top
of the Pizza compiler [44] and Jikes RVM [14]. The major components of the system
architecture are shown in Figure 1. These can be divided between the components
that process code once at the “code producer” (programmer, software, vendor, dis-

2

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

tributor) and those that process code at the time of program execution in the “code
consumer” (the virtual machine). Within the virtual machine, we can distinguish be-
tween activities that happen statically (when the method is loaded or JIT-compiled)
and those that happen dynamically each time a method is executed.

The code producer begins by compiling Java source code into an SSA-based inter-
mediate representation. After compilation from Java source code into an SSA-based
intermediate representation, several optimizations, including common subexpression
elimination (CSE), are performed and the result is written to a SafeTSA file. Since
bounds checks are represented explicitly, CSE is able to eliminate duplicate bounds
checks [3, 55]. The optimized SafeTSA file is then processed by the “Speculator” and
other preliminary analyses that derive a constraints system from the program code.
The speculator searches the code for certain patterns for which it is expected that the
redundancy of particular bounds checks can only be established through insertion of
dynamic checks on program or method inputs. It then annotates these conditions as
speculative invariants of the code. The Constraint Analysis System examines systems
of linear inequalities derived from program code and speculated dynamic invariants,
identifies whether these constraints are sufficient to entail the safety of particular
bounds checks, and for those bounds checks, produces a proof tree showing that this
is the case. These proof trees are used to produce verifiable bounds check elimina-
tion annotations proving those bounds checks are unnecessary. These annotations are
transported along with the SafeTSA code to the code consumer.

In the code consumer, a bounds check elimination annotation verifier checks the
proofs against the source code and speculated dynamic invariants. If the proofs
verify, the JIT compiler inserts code for dynamic guards at method heads to check
any speculative invariants and omits the code for the individual bounds checks which
are proved unnecessary. The program will then run without executing the individual
bounds checks. If a dynamic guard fails at runtime, however, an unoptimized version
of the method will be executed instead.

1.2 Outline

In the following sections, we discuss the functioning of three major system compo-
nents that contribute to array bounds check elimination: preliminary optimizations
and analyses, the speculator, and the constraint analysis system. Issues related to
consumer-side runtime system support are included with the discussion of the corre-
sponding producer-side components. In Section 2, we discuss certain optimizations
(specifically, common subexpression elimination, load elimination and induction vari-
able substitution) that are performed to enable subsequent analysis and optimization.
In Section 3 we describe the functioning of the Speculator component.1 Section 4 de-
scribes the constraint analyzer2 and how it is used to generate verifiable proofs of array
access safety. Then in Section 5, we describe our experiments, which examine the con-
tribution of different components of our system and compare our system’s effectiveness
with Array Bounds-Checks on Demand (ABCD) [11] and Chen and Kandemir’s veri-
fiable dataflow analysis [15] in terms of number of bounds checks eliminated, runtime
overhead, and execution speedups for the Java Grande Forum Benchmarks.

1A preliminary description of this component was presented at PPPJ’08 [24].
2A preliminary description of this component was presented at SAS’09 [43].

3

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

2 Preliminary Optimizations and Analysis

Program code is not always in optimal form for bounds check elimination analy-
sis. This can be, for example, because of indirection caused by design patterns or
attempts at code optimization by the developer. The result is that relationships be-
tween variables may be hard to find and exploit. The preliminary optimization and
analysis steps may modify the code into a semantically equivalent form, or perform
an analysis that is hard to integrate in later steps. The goal in both cases is to give
more information to the constraint analysis phase, so that more bounds checks can
be potentially eliminated. Three such techniques are used in our system.

CSE. Common Subexpression Elimination removes redundant computations. The
SafeTSA system includes both a global and local variant, implemented as a depth-
first search on the program structure. The SafeTSA type system allows not only the
removal of redundant arithmetic computation, but also of redundant null and bounds
checks. The elimination incurs no cost at runtime, since the class loader uses the type
system to verify the code while loading a class.

Although our system—as well as the other bounds check elimination techniques
with which we will compare—include a more generalized form of bounds check elim-
ination that can subsume the bounds checks CSE can eliminate, CSE simplifies the
code at no cost for the consumer, so we adopted CSE-optimized code as the baseline
for our comparisons.

Load Elimination. Object-oriented programming might lead to storing arrays and
other values in fields. Using such values, thus, involves field access instructions.
A naive, conservative analysis must assume a change of the content between two
accesses, since Java is a multi-threaded language. This can often inhibit bounds
check eliminations when the array is not accessed directly from a local variable (e.g.,
it is accessed from an Object field or an array-of-arrays) .

The memory model described in the Java language specification [26] allows op-
timized code to cache field accesses in the absence of explicit synchronization. This
technique is called load elimination (LE).

Our multiphase bounds check elimination system includes a simple load elimina-
tion scheme on both the producer and consumer sides. The actual program code is
not changed until execution. Instead, a flag is embedded in the annotations whenever
load elimination is necessary for the verification to succeed. A verifier that is resource-
or time-constrained may thus elect not to perform load elimination and discard any
proofs that depend on it.

IVS. Hand-optimized code often transforms loops to be more efficient on the ma-
chine level. Instead of using a complex expression in the loop counter to index an
array, helper variables are introduced that are independently updated in the loop.
Those variables are called induction variables.

Induction variables do not have a direct dependency to the loop counter. Thus a
simple analysis will not be able to compute the range of the variable and determine
if the bounds check is redundant.

4

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Induction Variable Substitution (IVS) is a technique to counter this problem. It
automatically analyzes array index expressions, finds induction variables and com-
putes a closed form in the loop counter for them, if possible. The closed form can
than be tested for bounds check redundancy or other optimizations.

Many IVS algorithms with varying degrees of complexity (e.g., [2, 57, 10, 54]) have
been invented with the more complex algorithms being able to express induction
variables as polynomials [57, 28, 9]. While this power could be useful, our system
currently restricts IVS to linear induction variables. This is the result of a conscious
design decision: unlike typical induction variable substitution optimization passes, the
actual program code is not transformed so that the induction variables are replaced by
their closed form. Instead, the closed forms of induction variable are captured as linear
inequality constraints on the induction variables, which can then be processed by the
constraint analysis system that will be described in Section 4 and verified [56]. This
is done for a couple reasons. First, the induction variables might have arisen as the
result of intentional optimization (i.e., strength reduction). In such cases, it will often
be desirable for the analysis to be able to identify and eliminate as many unnecessary
bounds checks as possible without interfering with other optimization. A second
concern is code size, replacing induction variables with complex index expressions
will likely increase code size, which may be undesirable because of increased size
increases network transmission time and memory usage. As a consequence of this
design decision, all variable substitutions that are used to establish in-bounds array
accesses must be able to be established based on linear inequality constraints, so
IVS methods based on more general polynomials cannot be used.3 Thus the actual
implementation of IVS analysis in our system, is actually the result of cooperation
between a traditional IVS-based analysis and the constraint analyzer that will be
described in Section 4.

A simplified traditional analysis (derived from [57]) is used to find possible induc-
tion variables and suggest closed forms. In SSA form, induction variables have to be φ
instructions, thus join points of loops are examined for candidates. In SafeTSA, loop
headers generally have two in-edges: from the initialization before the loop and from
the end of the loop. This simplifies the analysis. For each φ, the initial parameter and
the loop parameter are evaluated symbolically to inequalities. The loop expression
is then modified to take into account the start value, so that it is equivalent to the
update of the induction variable over one loop iteration:

V = I+k×L V . . . variable, I. . . initialization, L. . . loop update, k. . . loop counter

Simple IVS-like proposals are generated by pairwise comparison of the initial values
and loop updates. Assume V1 and V2 are loop variables, I1 and I2 the initial expres-
sions and L1 and L2 the loop updates. The following inequalities can be produced:

I1 ≤ I2 ∧ L1 ≤ L2 ⇒ V1 − V2 ≤ 0
I2 ≤ I1 ∧ L2 ≤ L1 ⇒ V2 − V1 ≤ 0

Traditional IVS is attempted when very simple variables are found: the loop updates
are a multiple of each other. In this case, the two equations can be combined to

3On the other hand, though, bounding induction variables using inequality constraints does po-
tentially provide some additional flexibility compared to substitution (which requires strict equalities
in the closed form).

5

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

void f(int n, int a[]) {
for (int i = 0; i < n; i++)

a[i] = a[i] + 1;
}
void g(int a[]) {

f(a.length , a);
}

Figure 2: Array bounds check with context-dependent redundancy.

eliminate the loop counter and still stay linear:

D2 ≡ 0(D1) : V2 − I2 + (D2/D1) × (I1 − V1) = 0
D1 ≡ 0(D2) : V1 − I1 + (D1/D2) × (I2 − V2) = 0

After proposals are generated, they are passed to the constraint analysis system (Sec-
tion 4). This may fail, if it cannot be established that there is no arithmetic un-
derflow/overflow. If, however, the constraint analyzer is able to verify the proposed
constraint, it will be recorded as an additional constraint that can be used in later
phases.

Some additional techniques (including those in [57, 58, 51]) could be adapted to
allow for a more precise analysis, detecting and wrapping more kinds of induction
variables. In general, though, there is no way to record the results of those techniques
precisely as linear constraints. It would, however, be possible to bound the values
using linear constraints.

Flip-flop and periodic variables take their values from a ring of values. If all the
possible values can be compared to each other, the flip-flop or periodic variables can
be bounded by the smallest and the largest value in the ring, yielding two simple
linear constraints of the form:

p − l ≤ 0
s − p ≤ 0

p. . . per. variable, l. . . largest value, s. . . smallest value

Conditionally updated variables are not recognized as induction variables by tradi-
tional linear IV techniques. However, they often exhibit monotonic behavior, that is
they are either always non-decreasing or non-increasing. Advanced techniques (e.g.,
[58, 51]) have been developed to exploit this, either by only establishing the general
direction of a variable or by developing bounding functions. In our system, how-
ever, only a simplified version could be used, because the bounding results have to be
expressible with linear inequalities.

3 Speculator

3.1 Speculative Optimization

Classical static bounds check analysis can be severely hindered by programming pat-
terns that hide dependencies between program variables. An example of this can
be seen in Figure 2. In the context of just method f, there is no relation between n

6

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

and a.length, which means that any system using only conservative, intraprocedural
static analysis will be to unable safely remove the bounds checks.

There are a few approaches that could be used to optimize such bounds checks.
If g is the only method calling f, interprocedural analysis could be used to show that
there is a relation between the method parameters, thus allowing the removal of the
bounds checks. But since the Java Virtual Machine supports dynamic class-loading,
additional callers may be added at any time. Thus ensuring the validity of the analysis
needs additional runtime overhead. (Inlining the method f into g would also expose
the dependency, but still has complications associated with dynamic class loading and
dynamic dispatch, since the inlining would only be valid if f is the only method that
could be called by g.)

The approach used by our system, however, relies on a specialization of the code
that does not rely on the context the method is called in, but rather assumes certain
properties of the program state at certain points in the method and may then optimize
the code accordingly. This can result in a set of versions of a method body or smaller
code fragment, each specialized for different assumptions. A dynamic test can then
be used to select the correct version at runtime.

Since these properties need not be based on a conservative analysis, the optimiza-
tion based on them can be considered ‘speculative’ in the sense that the properties
may not hold, and if the properties do not hold, then the specialized code may be
invalid. Verifying that the speculative properties hold and falling back to the unspe-
cialized version when they do not may have introduced overhead beyond what would
have been incurred by simply using the unoptimized code. Hence, we will refer to
these properties as ‘speculations.’

Conceptually, such speculative specialization could be implemented as a pure
producer-side (or even source-to-source) transformation that introduces an if state-
ment condition that tests the speculation and performs the same code in both the
‘then’ and the ‘else’ arms allowing the ‘then’ arm to be optimized based on the knowl-
edge that the speculation is true. In order to improve space efficiency, however, we
introduced support in the consumer-side of our system for runtime-specialization.

This is accomplished by having the producer-side speculator augment the program
representation with annotations that speculate that arbitrary linear inequalities hold
at specific program locations. (The location at which a speculation is considered
to be ‘anchored’ should be one that is dominated by all of the program variables
that occur in the speculated linear inequality. The linear inequality can be assumed
to hold at program locations dominated by the anchor point.) A runtime specializer
pass occurs during JIT compilation, which inserts the dynamic check that ensure that
code optimized under the speculative assumptions will only be executed when those
speculations hold. The separation between speculator and specializer has several
advantages. It allows each to evolve and be improved independently. In addition,
since the specializer can work on the consumer side, after transmission, the bandwidth
required for mobile code transmission is reduced. Furthermore, with appropriate
runtime support, it is possible to avoid code duplication altogether (e.g., [59]).

The task of the producer-side speculator is to find and annotate profitable specu-
lations. A general assumption underlying the heuristics used in our search for specu-
lative constraints is that, in most programs, bounds check exceptions should be rare.
Given this assumption, the safety constraints of an index of an array access could be
used directly as a speculation, albeit a rather trivial one. If we simply replace the

7

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

1 void f(int a[], int x) {
2 int sum = 0;
3 for (int i = 0; i < x; i++)
4 sum = sum + a[i];
5 }

Figure 3: Java Method With A Loop-Invariant Constraint.

bounds checks with its safety constraints, nothing is gained since the runtime system
has to ensure the speculation by inserting checks again. There are two obvious ways
out of this dilemma. One could amortize the cost of one speculation across multiple
static bounds check locations or one could amortize the cost of the speculation across
multiple dynamic executions of the same bounds check. An example of the latter
occurs if the speculation can be moved through loop-invariant code motion.

These consideration are realized using a two-stage process. The first stage analyzes
every bounds check in isolation, trying to find the best speculation to remove that
check. The second stage occurs after static analysis has shown how bounds checks
can be eliminated, and consolidates combinable speculations and removes those spec-
ulations that are not likely to be profitable.

3.2 Patterns

Our analyzer uses code patterns to find good speculations in the first stage, which
cover a range of common program constructs. Note that for simplicity, the examples
in the following paragraphs are given in high-level code, while the framework itself
uses SSA form.

Loop-invariant bounds checks. Consider the code fragment in Figure 3. In this
code, neither the array a nor the upper bound x are changed during the execution of
the loop. They are loop-invariant. The lower bounds check can be statically proven
redundant. The index is a φ-function, so the constraint needs to be proven separately
for each of the control flow edges. The proof corresponding to the first edge (when
execution initially enters the loop and i = 0) is trivial. The second one requires
that i+1 ≥ 0. With the inductive assumption of i≥ 0, this is true. It can also be
shown that there will be no arithmetic overflow. When i+1 gets computed, it is
known that i<x (line 3) and x≤MAX_INT (since x is an int variable), it follows that
i+1 ≤MAX_INT, and there is no arithmetic overflow.

There is no similar proof for the upper bounds check. All that can be derived
is that i<x at the location of the array access. The bounds check is thus not fully
redundant and cannot be removed directly. Since neither the array a nor the upper
bound x change during the loop, the upper bounds check is partially redundant. It can
be moved before the loop, where it only gets executed once. Therefore the speculation
will be x≤a.length, anchored at a point before the loop dominated by both x and a.

Care has to be taken to account for the precise exception semantics of Java. All
exceptions have to be reported faithfully (that is, leaving the same program state
as an unoptimized version). If in the above example the loop would be executed n
times before throwing an exception, the optimized code has to behave exactly the

8

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

void f(int a[], int b[]) {
for (int i = 0; i < a.length; i++)

a[i]= a[i] + b[i];
}

Figure 4: A method with coterminous arrays.

void f(int a[][]) {
int n = a[0]. length
for(int i = 0; i<a.length; i++) {

int b[] = a[i]
for(int j=0; j<n; j++)

b[j] . . .;
}

}

Figure 5: A method with rectangular arrays.

same. Thus it is not valid to throw an exception before the loop. In our system the
specializer takes care of those semantics.

While this simple pattern already applies to a significant number of loops, it
can be generalized to apply to general linear inequality constraints built from linear
expressions used for the induction variable’s initial value, loop condition, and the
array index. Note, however, that in such cases, one speculation will no longer suffice
to prove that there will be no arithmetic overflow, so further speculations on the values
of the variables in the expressions might be necessary. Since the valid combinations
of the values with no overflow form a rather large set, the speculator will have to
guess reasonable values, for example guessing that the values are bigger or equal to
zero. These speculations are more arbitrary than the original speculation that there
will be no out-of-bounds array access, thus it is less obvious that they should hold
during program execution. Furthermore, adding more speculations means adding
more runtime checks. If the loop is not executed enough times, the gain might not
offset the JIT compile time and runtime check overhead. Thus it is reasonable to
set an upper bound for the complexity of the expressions in the loop. We found
that restricting the expressions so that the resulting speculations have at most three
variables is a good compromise that catches all significant hot-path loops in our
benchmarks without too much overhead.

Coterminous-array loops. Loops commonly operate over multiple arrays, which
are implicitly assumed to be of the same length. An example of such a loop operating
on coterminous arrays is found in Figure 4. In this code, it is assumed that the array
b is at least as long as array a. So this is a reasonable speculation, which is enabled
by allowing array lengths in the speculations of loop-invariant bounds checks. In the
example above, this results in a speculation of the form a.length≤b.length.

9

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Rectangular arrays. Scientific algorithms often make use of multi-dimensional
arrays. Such a computation might look like the code shown in Figure 5. Many ap-
plications only use rectangular arrays, though Java allows multi-dimensional arrays
to have any form.4 That suggests that it might be beneficial to speculate that any
higher-dimensional array is rectangular. Note however that this requires certain safe-
guards. If the given array is non-local, concurrent modifications might occur during
the execution of the loop. The Java memory model, however, often allows memory
reads to be moved as long as there is no intervening synchronizing ‘acquire’ event.
In these cases, we may perform a variant of load elimination, which circumvents the
problem by making a thread local copy of the outer array, and speculate on the lengths
of the subarrays of this copy (which is now known to be invariant over the region of
specialization). (A similar technique was used by Midkiff et al. [34].)

As a generalization of rectangular arrays, this system can also be used to only
establish a lower or upper bound on the length of arrays. This broadens the applica-
bility in cases of “jagged” arrays that still allow safe bounds check removal, without
added complexity.

It is noteworthy that the techniques previously described in the first speculator
stage will probably already produce annotations for some instances of rectangular
arrays. Unfortunately, their speculations can only be anchored after the sub-array
has been retrieved. This forces the runtime system to insert checks in the middle
of the program code, which might either increase code in the hot path or not be
supported at all.5 Thus rectangular array speculation involves a trade-off: incurring
some overhead in copying the array, but allowing speculation at the beginning of a
method.

In our implementation, we focus on an array and its direct subarrays. In that case,
the first stage of the analyzer is augmented to recognize the origin of an array. If it is
another array, we mark that one as possibly rectangular and add new constraints to
our program representation. These involve a new virtual variable that stands for the
length of the shortest subarray of the rectangular array as well as a variable describing
the actual length of the current subarray. With these added constraints, the analyzer
might be able to prove a bounds check safe with or without further speculations.
In either case, the added constraints are generalized to form a statement over the
possibly rectangular array and are added as speculations.

When applied to the example above, this yields the speculation va ≥ a[0].length,
where va is the virtual variable describing the length of the shortest sub-array of a.

Simple bounds checks. For any bounds check that is not caught by the previous
techniques and cannot be proven statically, we can introduce speculations that coin-
cide with the safety requirements. Each of these speculations can then be anchored
at the earliest point it is valid (i.e., where all of its variables have been defined).

Note that this in itself does not make much sense since we trade the bounds check
for its two equivalent sub-checks, adding code and JIT compile-time overhead. It
might even trade one check for two since lower and upper bounds check might be

4Cf. Moreira’s [37] proposal for true multidimensional rectangular arrays.
5In fact, our prototype system only inserts speculations at the beginning of methods, and leaves

the non-optimized code in a separate method that will remain uncompiled until and unless it is
needed.

10

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

a[0] = 0;
a[1] = 1;
a[2] = 2;

Figure 6: Bounds checks that could be consolidated

combined into one instruction, e.g. using an unsigned comparison instead of two
signed ones.

3.3 Consolidation

After a whole method has been analyzed in the first stage, it is analyzed by the
constraint analysis system, which will be described in Section 4. At that point every
bounds check will either be statically proven to be redundant or will have a speculative
proof. The task of the second speculator stage is to remove those speculations that
are unlikely to be profitable on the runtime. In addition, it combines and replaces
speculations to reduce their number and make them more precise.

The replacement follows a simple rule. If a proof uses a speculation c1x1 + c2x2 +
. . .+c0 ≤ 0, and there is another speculation c1x1+c2x2+. . .+c′0 ≤ 0 with c′0 > c0, then
only the second speculation is needed, since it entails the first. This speculation needs
to be scheduled at a program location that dominates both of the prior speculations.
This ensures that any produced proof stays valid when switching the speculations. As
an example consider the code fragment in Figure 6. The first stage of the speculator
will, among others, create three speculations to prove the upper bounds checks. These
speculations are −a.length+1 ≤ 0, −a.length+2 ≤ 0 and −a.length+3 ≤ 0,
anchored before the first, second and third instruction respectively. The above rule
will consolidate these three speculations into the last one, which has to be moved to
the head of the fragment to cover all three bounds checks.

A simple heuristic is used to approximate the runtime impact of a speculation.
For every speculation, all bounds checks proofs that depend on that speculation are
gathered. If a speculation is used to prove a bounds check inside a loop, but is
anchored itself outside the loop, we optimistically assume that it is beneficial. But
if instead a speculation is only used in proofs of bounds check of the same nesting
depth, we require it to be used in at least three such proofs. This is based on the
assumption that a normal bounds check is implemented as one unsigned comparison
in a virtual machine. Since there might be two speculations needed to prove upper
and lower bounds checks, the speculations can become beneficial with three bounds
checks.

3.4 Precise Exceptions and Runtime dispatch

If implemented naively, speculation could potentially change program semantics.
Specifically, Java’s precise exception semantics require that the program state (or at
least, the visible behavior of the program after the exception) appears as if all of the
code up to the exception—but none of the code in the try block after the exception—
was executed. So, implementing speculation by throwing an exception immediately
whenever a speculation fails, would violate Java’s precise exception semantics. Spe-

11

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

cialization can be used to circumvent this problem. By holding multiple versions of
the fragment under the control of the speculation, at least one optimized and one
unoptimized, the correct semantics can be ensured by choosing the right fragment at
runtime. If no out-of-bounds access will happen as indicated by all speculations hold-
ing, choose the fully optimized version. Otherwise fall back to the unoptimized code,
which will throw exceptions at the right point. Note that it is possible to choose be-
tween more than two fragments, which may be necessary to optimize for overlapping
speculation ranges.

4 Static Analysis

After the program has been optimized, and the set of dynamically checked speculative
constraints, IVS-constraints, and the set of load eliminations have been obtained,
the program code is analyzed to develop a set of linear inequality constraints over
extended SSA (eSSA) variables in each procedure that hold when the variables are in
scope. These are then passed to the Constraint Analysis System (CAS), to determine
whether these constraints are sufficient to prove that the program bounds checks are
redundant.

CAS builds a Constraint System (CS) out of general linear relationships among
program variables. These have the form:∑

1≤i≤n

aixi + c ≤ 0 (1)

The CS is populated with linear constraints known as program constraints that are
known to hold because they are derived directly from the statements in the program.
CAS then determines whether a proposed inequality constraint (a conjectured relation-
ship among program variables) is consistent with those program constraints. That is,
CAS attempts to determine if the proposed constraint creates a contradiction. CAS
does so using negative logic: it tries to find sequences of program constraint com-
binations that are consistent with valid program control flow and which produce an
inconsistent result (i.e., c ≤ 0, where c is a positive constant) when combined with
the proposed constraint. Constraints are combined via elementary row operations to
produce an equivalent constraint with fewer variables. If CAS can determine that,
regardless of the control path taken to reach the variables in a constraint, there is a
corresponding set of program constraint combinations that can be combined with the
proposed constraint to produce an inconsistency, then the proposed constraint can be
rejected. Specifically, in the case where the rejected constraint states that an index is
out of bounds, the array access using that index will be safe and its runtime bounds
check can be eliminated. CAS records the sequence of constraint combinations from
which an inconsistency was derived, enabling its reasoning to be later checked by
verification systems.

4.1 eSSA Representation

Our system is able to simultaneously consider program control and data flow making
meaningful conclusions about how program variables relate to one another, because
the CS used by our system is derived from the program’s eSSA [11] representation.

12

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

read(a);
read(b);
if (a < b) then

{Block A}
else

{Block B}
end
{Rest of program}

Figure 7: Example

read(a)
read(b)
if (a < b) then

a1 = π(a)
b1 = π(b) /* a1 + 1 <= b1 */

{Block A} /* a,b replaced with a1, b1 */

else
a2 = π(a)
b2 = π(b) /* b2 <= a2 */

{Block B} /* a,b replaced with a2, b2 */

end
a3 = φ(a1, a2)
b3 = φ(b1, b2)
{Rest of program} /* a,b replaced with a3, b3 */

Figure 8: eSSA Example

13

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

eSSA extends the traditional SSA [18] representation with “π-assignments”, which
reflect constraints resulting from taking particular control flow graph edges subsequent
to conditional statements. These π-assignments create new variables (aliases) along
control flow paths that are dominated by the outcome of a conditional expression.
The π-variables referenced in constraints implicitly identify a particular set of control
flow paths within the program, and can later be combined via an SSA φ-function at
a control flow merge point. The code fragment in Figure 7 would be transformed into
the equivalent eSSA fragment shown in Figure 8

4.2 Elementary Row Operations

CAS reduces the problem of determining whether a proposed constraint holds in the
context of a program to deciding whether a system of linear inequalities is consistent.
Several of the techniques used to solve this and related problems (such as Gaussian,
Gauss-Jordan, and Fourier-Motzkin elimination) operate on the principle of itera-
tively reducing the original system to simpler but equivalent forms until it is able to
determine consistency (or solutions). One of the fundamental concepts underlying
such techniques is that of elementary row operations, which are transformations to
the set of linear inequalities which do not change the solution set of the system. Tech-
niques such as Gaussian and Gauss-Jordan elimination reduce a matrix representing
a system of linear equations into an equivalent but simpler form by performing only
the following row operations:

Row Switching A row within the matrix can be switched with another row

Row Multiplication A row can be multiplied by a positive constant

Row Addition A row can be replaced by the sum of that row and a multiple of
another row

A related technique to determine the consistency of a system of linear inequalities
via elementary row operations is Fourier-Motzkin Elimination (FME) [39, 20, 49].
FME applies elementary row operations to eliminate variables from the system until
its consistency is readily decidable. It eliminates a variable by combining all upper
bounds on a variable x with all lower bounds on x. Whenever a lower bound on x is
paired with an upper bound on x, a new inequality constraint is produced in which
x does not appear. After all variables have been eliminated, the system contains
constraints of the form c ≤ 0. If all such constraints are valid (that is, c is negative
or zero), then the original system is consistent. Otherwise, the original system is
inconsistent.

4.3 The CAS Constraint System

CAS’s approach is based on FME: it eliminates a variable from all constraints in
a single step. CAS constructs a Constraint System (CS) and combines constraints
within it to reason about relationships among program variables. We now describe
these two facets of CAS: representation via the CS and reasoning via constraint
combination.

CAS builds and manipulates a Constraint System (CS = (V,C)) to represent
relationships among program variables. V contains representations of the variables

14

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

in the program, while C contains linear inequalities that represent constraints over
those variables. These elements of CS are derived from the program’s assignment
and conditional statements. CAS continually reduces CS by eliminating variables in
V until it is able to determine consistency. To eliminate a variable xn in V, CAS
combines each lower bound (LB) on xn in C (i.e., constraints in which xn’s coefficient
is negative) with every upper bound (UB) on xn (i.e., constraints in which xn’s coef-
ficient is positive) in C via elementary row operations that produce a zero coefficient
for xn in the result. At the conclusion of this step, xn is removed from V, all new con-
straints formed by these combinations are added to C, and all former bounds on xn

are removed from C. Thus, as processing continues, the set V becomes progressively
smaller, while C (potentially) becomes larger. Note that C does not increase if all
constraints are difference constraints, whereas the elimination of variables involved in
general linear constrains causes the number of constraints to increase.

4.3.1 Vertices in CS and their Properties

CS contains a vertex for each variable in the eSSA representation of the program
(including π- and φ-result variables). Each vertex v ∈ V has several properties,
including:

v.LB the set of constraints e ∈ C representing lower bounds on v.

v.UB the set of constraints e ∈ C representing upper bounds on v.

v.PHI a boolean indicating whether v is a φ-result variable

4.3.2 Constraints in CS and their Properties

The constraints in C represent linear constraints over the program’s variables. CAS
deals generally with two kinds of constraints: the constraints in C that are derived
from program statements are called program constraints, and are known to be mu-
tually consistent if they all lie on a non-cyclic feasible control flow path, whereas a
proposed constraint represents a linear constraint over variables that CAS attempts
to disprove. In our work, a proposed constraint represents an unsafe condition that
would lead to an array-out-of-bounds exception (either upper or lower bound). Since
the program constraints are self-consistent (arising directly from program logic), and
since a proposed constraint states an access is unsafe (exceeds array bounds), an
inconsistent system means that the array access is actually safe. In CAS all con-
straints represent less-than-or-equal relationships, so assignments and equalities are
represented by a pair of inverted constraints. That is, if the assignment statement
x = y or equality statement x == y occurs in the program, then two constraints are
added to C: x − y ≤ 0 and y − x ≤ 0. In order to ensure combined constraints
lie on consistent control-flow paths, constraints in C have a “direction” flag associ-
ated with them to distinguish whether the assigned variable has a negative coefficient
(“forward” direction) or a positive coefficient (“reverse” direction). For example, the
constraint −x + y ≤ 0 resulting from the assignment statement x = y is assigned
a “forward” direction, since the variable being assigned to (i.e., x) is given a lower
bound (has a negative coefficient). The other constraint resulting from this assign-
ment (x−y ≤ 0) is assigned a “reverse” direction since the assigned variable carries a

15

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

int A[] = new int[y0];
/* y0 == A.length */

x0 = 0
L: x1 = φ(x0, x3)

if (x1 >= y0) goto E:
x2 = π(x1)
y1 = π(y0)
/* x2 < y2 */

A[x2] = ...
x3 = x2 + 1
goto L:

E: x4 = π(x1)
y2 = π(y0)
/* y2 <= x4 */

...

Figure 9: eSSA Version

Constraint Direction

x0 + 0 ≤ 0 Rev
−x0 + 0 ≤ 0 Fwd

A.length − y0 + 0 ≤ 0 Ind
−A.length + y0 + 0 ≤ 0 Ind

x0 − x1 + 0 ≤ 0 Fwd
−x0 + x1 + 0 ≤ 0 Rev

x2 − x1 + 0 ≤ 0 Rev
−x2 + x1 + 0 ≤ 0 Fwd

y1 − y0 + 0 ≤ 0 Rev
−y1 + y0 + 0 ≤ 0 Fwd

x2 − y1 + 1 ≤ 0 Ind
x2 − x3 + 1 + 0 ≤ 0 Fwd

−x2 + x3 − 1 − 0 ≤ 0 Rev
x3 − x1 + 0 ≤ 0 Fwd

−x3 + x1 + 0 ≤ 0 Rev
x4 − x1 + 0 ≤ 0 Rev

−x4 + x1 + 0 ≤ 0 Fwd
y2 − y0 + 0 ≤ 0 Rev

−y2 + y0 + 0 ≤ 0 Fwd
y2 − x4 + 0 ≤ 0 Ind

Figure 10: Constraint System (CS)

positive coefficient. Constraints arising from equality and inequality test operations
are assigned an “independent” direction, but as we shall see later, if an “independent”
constraint is combined with a constraint from an assignment, the new constraint will
carry the direction of the assignment. Additionally, proposed constraints are initially
assigned an “independent” direction as well. Another flag associated with a constraint
is the proposed flag, which is a binary indication of whether a constraint is a program
or proposed constraint. If a proposed constraint is combined with a non-proposed
constraint, the proposed attribute is set to true on the result.

Any constraint in which xn’s coefficient is negative is a lower bound on xn, and
is added to the set xn.LB, while those with positive coefficients for xn are upper
bounds and are added to xn.UB. Since a single constraint can contain terms for
multiple variables, the same constraint can simultaneously be in multiple UB or LB
sets.

As an example, consider a simple program that allocates an integer array of y
elements, and then assigns some value to each element in ascending order. The eSSA
listing is shown in Figure 9, and the resulting CS is shown in Figure 10.

4.4 Constraint Combination in CAS

Once all program constraints and the proposed constraint are added to CS, CAS de-
termines the plausibility of the proposed constraint by eliminating variables. Unlike
conventional FME where each upper bound on a variable is indiscriminately combined
with each lower bound on a variable to eliminate it from the system, CAS restricts

16

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

which constraints can be combined in order to ensure the resulting constraint corre-
sponds to a valid control flow path in the program.

4.4.1 Direction Compatibility and Coupling Constraints

Some constraints, in particular, the ‘coupling’ of a φ-result variable with each of its
operand variables, are only valid when certain control flow graph edges are traversed.
An example of this can be seen in the case of the coupling constraints derived from the
instruction x1 = φ(x0, x3) in Figure 9: x1 − x0 + 0 ≤ 0, −x1 + x0 ≤ 0, −x1 + x3 ≤ 0,
and x1−x3 ≤ 0. If the lower and upper bounds on x1 in these constraints were allowed
to be combined arbitrarily, it would yield 0 ≤ 0, 0 ≤ 0, x0−x3 ≤ 0 and −x0 +x3 ≤ 0.
The first two of these constraints are consistent but redundant, whereas the second
two are together equivalent to x0 == x3. If this were true, then the value of x4 at the
loop exit in Figure 9 would always be 0, but this relationship does not follow from the
code, since the coupling between x0 and x1 and between x1 and x3 exist on different
loop iterations.

CAS avoids this by flagging these ‘φ-coupling’ constraints (like −x1 + x0 + 0 ≤ 0)
where the φ-variable is negative as “forward” and those where the φ-variable is pos-
itive as “reverse.” CAS then prohibits the combination of bounds with opposing
directions. That is, CAS will never combine a forward constraint with a reverse con-
straint. If a forward or reverse constraint is combined with another constraint, then
the resulting constraint will carry the forward or reverse direction, respectively. In
this way, combined constraints derived from at least one non-independent constraint
inherit the direction of the non-independent constraint, while a combined constraint
is “independent” only if both “parent” constraints were “independent.”

In the case of the φ-function in Figure 9, the constraint −x1 +x0 ≤ 0 has forward
direction and the constraint x1 − x3 ≤ 0 has reverse direction. Combining them
to eliminate x1 is therefore not allowed. This will always be true for φ-coupling
constraints. Since the φ-variable (x1, in the example) is the variable being assigned, it
will always have a coefficient of −1 in the forward φ-coupling constraints. Conversely,
it will always have a coefficient of +1 in reverse φ-coupling constraints. For two
constraints to be combined, they need to have opposite signs on the coefficient of
the variable being eliminated, so because coupling constraints with opposite signs
will also have opposite directions, the direction compatibility test effectively prevents
CAS from using the φ-coupling constraints to inappropriately combine the constraints
on the different φ operands. (They can, however, still be combined in the case of loops
as described in the section of Sub-Cycle Elimination below).

In addition, direction flags on “π-coupling” constraints (such as x2 − x1 + 0 ≤
0) play a role in ensuring that constraints derived from conditional branches are
only applied on the control flow path dependent on that conditional branch. An
example of this is the constraint x2 − y1 + 1 ≤ 0 in Figure 10 which is derived from
the conditional branch in Figure 9. In general, constraints are presumed to hold
wherever all of the variables involved in the constraint are in scope; eSSA π-variables
are introduced for variables involved in conditionals, so that constraints for control-
conditions are implicitly scoped to the control-dependent region. The direction rules
ensure that a constraint obtained by combining condition constraints with constraints
that are neither φ-coupling constraints nor proposed constraints will always contain
at least one variable that is control dependent on the condition. As a result, those

17

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

variables can only be eliminated from the constraint if it is combined with a constraint
derived from the coupling of a φ-function operand that is control-dependent on the
condition or from an original proposed constraint that contained a variable that is
control dependent on the condition; in either case, it is appropriate to include the
condition-derived constraint. Otherwise, if it is inappropriate, the variable will be left
unbounded and will not be able to be used to show an inconsistency.

4.4.2 Sub-Cycle Elimination

CAS detects (in)consistencies through the formation of inequalities in which all vari-
ables have been eliminated, leaving only the constant term (we refer to these as
‘reduced’ constraints). This can be viewed as a ‘cycle’ in which each term with a
positive coefficient is paired with a term with a negative coefficient. In the exam-
ple program (Figure 9 and 10), this would occur if the proposed constraint for the
upper-bound being violated −x2 + A.length ≤ 0 is combined with x2 − y1 + 1 ≤ 0 by
eliminating x2 to produce A.length−y1+1 ≤ 0 which is combined with y1−y0+0 ≤ 0
to produce A.length − y0 + 1 ≤ 0, which is combined with -A.length + y0 + 0 ≤ 0 to
produce the inconsistency 1 ≤ 0. (Note how the final constraint completed the cycle
A.length ← x2 ← y1 ← A.length eliminating all of the variables.)

Smaller sub-cycles can also be formed if there are constraints derived from equality
relationships (i.e., x−y ≤ 0 and y−x ≤ 0) which are not qualified with direction flags
or in the case of loops. To handle the former situation, CAS keeps track of variables
that were eliminated to derive each constraint and does not allow constraints to be
combined if the same variable was eliminated from both sides of the inequality. The
latter case is handled by eliminating φ-variables last and detecting cycles during φ-
variable elimination. In such cases, CAS summarizes the loop under the assumption
that the back edge is traversed either an infinite number of times, or else not taken
at all, depending on which gives the most conservative (safest) summary for that
constraint.

4.4.3 φ-nodes

CAS uses a map to compare multiple constraints with the same set of terms and
propagates only the “best” one. The definition of “best” affects precision as well
as safety decisions and depends upon whether the variable being eliminated is a φ-
node. As described in [11], φ-nodes are “maximum” nodes, whereas other nodes are
“minimum” nodes. We ensure that only the weakest constraints are propagated when
a φ-node is eliminated, and the strongest constraint otherwise. To achieve this, CAS
maintains a map effectively keyed by a set of terms (excluding a constant), combined
with a direction. The value of the entry is the “best” constraint with those terms
and direction. This map initially is populated by program and proposed constraints
as they are added to the system. Thereafter, when a new constraint is produced via
LB-UB combinations, the map is consulted to see if a ‘better’ value (depending on the
type of eliminated variable) has already been produced. This is done by comparing the
constant in the new constraint with the constant in the map entry corresponding to
the new constraints terms and direction. If the new constraint and mapped constraint
are of equal strength, a constraint carrying the “proposed” indicator takes preference.
If not, the map is updated and the old constraint is deleted.

18

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Mapping a reduced result requires explanation. Consider the combination of z −
y ≤ 0 (Forward) and y − z ≤ 0 (Forward) to eliminate y. The reduced result (0 ≤ 0)
(Forward) has no terms, and the map key cannot directly be derived. In this case,
CAS constructs a key constraint to be used as a map key. The key constraint is of
the the form (α, direction), where α is the set of all terms in the LB, excluding the
variable being eliminated, and direction is the direction of the reduced constraint. For
example, suppose we wish to combine 3x + 4y − 2z ≤ 0 (Forward) with −3x − 4y +
2z ≤ 0 (Forward) to eliminate z. Since the result is reduced, our key constraint is
(3x+4y, Forward). Furthermore, if the constant in the reduced constraint is negative
and composed from the combination of exclusively assignment statements, then the
constant in the key constraint is set to −∞ to reflect the fact that the loop is unsafe
when taken in this direction and must be assumed to be taken an arbitrary number
of times (since each iteration weakens the constraint). Alternatively, since taking
a safe (incrementing) loop in a particular direction makes the constraint stronger
(by incrementing the constant), we assume the loop is never executed by setting the
constant in the the key constraint to the constant in the reduced constraint.

4.4.4 Unbound Variables

When a proposed LB is selected for pairing, a check is done to see if the variable being
eliminated is unbound. If so, CAS conservatively reports that the proposed constraint
holds. Equivalently, the unbound variable will remain after all other variables are
eliminated, but this approach allows us to terminate the algorithm quickly.

4.4.5 Initialization

CAS processing begins by initializing an empty CS, and program constraints are
added as the program is being parsed. CAS creates the internal representations of
the constraint and referenced variables, adds new variables to V, sets the direction
in the new constraint, and adds the new constraint to the appropriate variable’s LB
and UB sets, and adds the constraint to the map. Additionally, if the constraint
arises from an assignment or equality, the constraint is copied, the coefficients and
directions inverted in the copy, and the copy is added to UB and LB sets as well as the
map. Once all the program constraints are added, a proposed constraint is formulated
and passed to the propose() procedure. This routine creates and initializes a new
constraint, sets its proposed flag, and adds it to appropriate UB and LB sets and
the map. Next, assignments in the program are examined. For each assignment
constraint where none of the variables are φ- or π-result variables, the direction of
the constraint is changed to “independent.” This enables CAS to infer relationships
between x and y in code such as

x = 5;
y = 6;

where there is no intermediate variable to eliminate and direction incompatibility
would otherwise prevent the necessary constraint combinations.

19

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Procedure propose(pc)

/* Check if the proposed constraint pc is provably inconsistent
with the program constraints in this CS */

proposed inconsistencies = 0 ;
/* Add the proposed constraints to the UB and LB collections of

the variables it references */
foreach v in pc’s terms do

if v’s coefficient is negative then
Add pc to v.LB;

else
Add pc to v.UB;

end
end
update map(pc, null);
/* Convert assignments into inequalities where safe to do so */
foreach non-φ v in V do

if v is assigned in constraint c, c has no φs, and c is not a Pi-Assignment
then

c.direction = Independent;
end

end
/* Eliminate all variables in the system. We’ll return early if

we see a proposed consistency preventing us from disproving
the proposed constraint */

foreach non-φ v in CS do
eliminate(v);

end
foreach φ v in CS do

eliminate(v);
end
/* No proposed inconsistencies -- check if proposed

inconsistencies detected */
if proposed inconsistencies > 0 then

return FALSE;
else

return TRUE;
end

20

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Procedure eliminate(v)
foreach LB in v.LB do

if LB.proposed AND v has no upper bounds then
/* Unbound variable detected */

EXIT(TRUE);
end
foreach UB in v.UB do

if LB and UB have compatible directions AND do not form a sub-cycle then
/* Combine the constraints to eliminate v */

new con = combine(LB,v,UB);
if new con is reduced then

/* All variables have been eliminated, leaving only a constant term. If

this is a proposed constraint or is not a harmless cycle, then create

a key constraint from the eliminated terms (excluding v) so we can

consult the map */

if (new con.constant < 0 AND new constant.isAssignmentCycle) OR
new con.proposed then

calculate key constraint from LB and UB;
if new con.proposed then

/* Assume a proposed constraint is not strengthened by safe loop

traversals */

key constraint.constant = new con.constant;
else

/* Assume unsafe loops are taken indefinitely */

key constraint.constant = −∞;
end
key constraint.direction = new con.direction;
update map(key constraint, v);

end

else
/* There are more variables to eliminate -- see if this new constraint is

‘‘better’’ than one we’ve already seen */

if (update map(new con, v) == true then
Add new con to the UB and LB sets of remaining variables;

else
Discard new con;

end

end

end

end

end
delete all bounds in v.UB and v.LB;
if map[v, *].constant ≤ 0 and is proposed then

/* A consistency exists -- indicate we cannot disprove proposed constraint */

EXIT(TRUE)
end
if map[v, *].constant > 0 and is proposed then

/* Inconsistent proposed cycle -- increment counter and keep checking */

proposed constraints += 1
end

21

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Procedure update map(con, v)

/* Manage a map of the ‘‘best’’ constraints seen thus far. The
definition of ‘‘best’’ depends on whether the term just
eliminated to create a new constraint is a φ node or not */

if map[(con.terms,con.direction)] exists then
/* A constraint with the same terms and direction as the new

constraint has already been processed. See if the new
constraint is ‘‘better’’ */

old con = map[(con.terms,con.direction)];
/* If old con is proposed and con is a program constraint (or

vice versa) verify that the proposed constraint is not the
original proposed constraint and equal to or weaker than the
program constraint. If so, return ‘‘true’’ */

if v is non-φ then
/* Test the constant in the old constraint to see if the new

constraint is stronger. Replace and delete the old
constraint if it is weaker, or if it is not proposed
while the new constraint is proposed (to be
conservative). Return ‘‘true’’ if we updated the map,
‘‘false’’ otherwise */

else
/* Test the constant in the old constraint to see if the new

constraint is weaker, or if the new constraint is
proposed and is the same strength as the old constraint.
If so, replace and delete the old constraint. Return
‘‘true’’ if we updated the map, ‘‘false’’ otherwise */

end
else

/* This is a new map entry */
map[(con.terms,con.direction)] = con;
return “true”;

end

22

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

4.4.6 Processing

After initializing the constraint system, propose() calls eliminate() to remove each
variable from the constraint system. This method combines each LB on a variable
with all compatible UBs on the variable, checks for unbound variables, and invokes
the method update map() to manage the map of “best” constraints. As part of
the combination, a new direction is computed, and the parent UB, parent LB, and
the eliminated variable are recorded in the result, so they can be used to generate a
proof. Importantly, update map() checks that the proposed constraint is not equal to
or weaker than a program constraint that arises either through combinations or from
the original set of constraints from the program. If that is the case, then update map()
immediately returns “true” to indicate the proposed constraint is consistent with the
program constraints. If a cycle is detected, this is recorded by calling update map()
after first generating the appropriate key constraint as described previously.

CAS first eliminates all non-φ-result variables, leaving only the strongest con-
straint on each unique linear combination of φ-result variables. That is, if dur-
ing elimination, there are two constraints av1 + bv2 + cv3 + . . . + c1 ≤ 0 and
av1 + bv2 + cv3 + . . . + c2 ≤ 0 that arise during the elimination of non-φ-result vari-
ables, only the constraint with the largest constant value (c1 or c2) will be retained.
Thereafter, the φ-result variables are eliminated retaining only the weakest constraint
(i.e., the constraint with the smallest constant) for a given linear combination at each
intermediate stage. In either case, the retained constraint is the strongest conser-
vative constraint that CAS can derive for a given linear combination of variables.
After CAS eliminates a variable, it checks the map with keys (v, Independent), (v,
Forward), and (v, Reverse), which will yield the strongest conservative constraint of
the form c ≤ 0 that resulted from eliminating v. If c is non-positive, eliminate()
immediately returns ‘true’ meaning that it might be possible for an out of bounds
access to occur. Otherwise, if c is a positive constant, the bounds check violation
is not possible on the corresponding control flow paths. In this case, a counter is
updated to reflect the number of proposed inconsistencies encountered.

4.4.7 Termination

Once all variables have been eliminated without discovering a proposed consistency,
propose() returns ‘false’ if at least one proposed inconsistency was discovered. Oth-
erwise, propose() conservatively returns ‘true.’

4.5 Generating Proofs

The core algorithm described above was extended to produce proofs while finding
inconsistencies. As CAS eliminates variables to obtain derived constraints, it main-
tains a record of which source constraints were combined to produce the derived
constraint. These records can be combined to produce a proof tree, rooted at the
c ≤ 0 inconsistency. For example, consider the Java fragment in Figure 11a. For this
program, determining whether the upper bounds check is unnecessary involves finding
an inconsistency involving a system of inequalities entailed by instruction semantics
plus the proposed constraint that the upper bound is violated (−y + a.length ≤ 0).
While deriving the inconsistency 1 ≤ 0 for this system of inequalities, CAS would
also build a tree of constraints leading to the inconsistency similar to the one show

23

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

1 x = 5 ;
2 a = new int [x] ;
3 y = 4 ;
4 a [y] ;

(a) source

−x + 5 ≤ 0
ASGNLB(1) −a.length + x ≤ 0

NEW (2)

−a.length + 5 ≤ 0
ADD

y − 4 ≤ 0
ASGNUB(3) −y + a.length ≤ 0

PROPOSED

a.length − 4 ≤ 0
ADD

1 ≤ 0
ADD

(b) CAS constraint inconsistency tree

−x + 5 ≤ 0
ASGNLB(1) −a.length + x ≤ 0

NEW (2)

−a.length + 5 ≤ 0
ADD

y − 4 ≤ 0
ASGNUB(3)

y − a.length + 1 ≤ 0
ADD

(c) positive logic proof tree

Figure 11: Program with Proof Tree

in Figure 11b. Each inequality in the proof tree is justified by adding to inequalities
together (ADD) or is derived from program source statements according to a rule
specific to those source statements. After CAS returns its result, the constraint for
the proposed “assumed violation” is removed, leaving a positive deductive proof that
the upper bound of the array is respected by program execution similar to the one
shown in Figure 11c. This proof tree can be used as a certificate that the check of
the index does not exceed the array’s upper bound is unnecessary.

In general, the rules for constraints derived from instructions may have premises
that need to be satisfied. In particular, the constraints derived from arithmetic op-
erations (e.g., the constraint x − y − 1 ≤ 0 from the operation x = y + 1) require
the establishment of the lack of arithmetic overflow (e.g., y + 1 ≤MAX_INT). In this
case, CAS may be invoked iteratively to create additional proof trees to satisfy such
premises. These trees can then be composed to produce a complete proof tree of the
desired property.

These proofs are then encoded using the verifiable bounds check elimination an-
notation scheme that was described in von Ronne et al. [56]. In this scheme the
annotations consist of claims and proofs. There are a fixed set of rules for instantiat-
ing claims for different types for operations. Claims are considered anchored to the
instruction which they were instantiated from. For example, one rule allows the claim
x − y − 1 ≤ 0 at the location of the instruction implementing x = y + 1. Some of
the rules require that proof obligations be discharged for the claim to be considered
valid. In fact, the rule allowing x− y − 1 ≤ 0 from x = y + 1 includes an obligation
for a proof that shows y +1 ≤MAX_INT. Similarly, bounds checks that are determined
by the producer-side system to be redundant must be claimed redundant by a rule.
That rule imposes proof obligations requiring it to be shown that the index is less
than the array length and greater than 0. Proofs are formed by combining claims
(that are in scope) using addition and modus ponens. A complete description of this
scheme, including more details on the rules and claim combination operators, can be
found in von Ronne et al. [56].

24

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Verification merely requires the runtime system to do a pre-order traversal of the
program’s dominator tree, during which a list of active claims is maintained. When
an annotation is encountered, the claim rule is checked against the instruction it is
anchored to. If the type of instruction does not match the claim rule, if the referenced
claims are not in the active list, or if the referenced claims do not match the kinds of
constraints required by a combinator, then the annotation will be rejected. Otherwise,
the proofs are checked by loading referenced claims from the active list, applying the
indicated combinators, and computing a resulting proof. If this discharges the proof
obligation for that claim, then the claim is added to the active list until it no longer
dominates the current node (claims are added and removed from the active list in
LIFO order).

4.6 Arithmetic Overflow

The algorithm described above finds symbolic solutions in the integer domain Z.
Java’s integer type int, however, is restricted to integers representable in 2’s comple-
ment 32-bit words and “wrap around” when operations underflow/overflow. Thus,
the verification system requires supplementary proofs that the arithmetic operations
from which constraints are drawn do not invalidate those constraints through arith-
metic underflow or overflow. These are generated by examining the eliminations used
by CAS, identifying the constraints derived from arithmetic operations, and invoking
the CAS algorithm on a proposed constraint representing the underflow or overflow
condition. Proving these constraints may, in turn, require further invocations to check
for underflow or overflow in the arithmetic instructions providing constraints used in
those proofs and so on.

5 Experimental Results

The components of our Multiphase Bounds Check Elimination method (MBCE) were
implemented in the SafeTSA compiler and the SafeTSA virtual machine (VM). The
SafeTSA VM is derived from Jikes RVM 2.2.0.

For the purpose of comparison, we also implemented Array Bounds Checks on De-
mand (ABCD) [11], a well-known fast JIT-time bounds check elimination algorithm,
and Chen and Kandemir’s [15] bounds check elimination method based on a verifiable
data flow analysis (which we will henceforth refer to as VDF). Both methods had to
be slightly extended to work with the SafeTSA data structures and features, most
notably, the extended type system and its explicit type coercion instructions.

To evaluate the three approaches, we used the Java Grande Forum benchmarks
[13]. The benchmarks were modified so that more array bounds could be eliminated
by intraprocedural analysis6. They were then compiled into SafeTSA. During compi-
lation to SafeTSA, common subexpression elimination was applied. Thus, the baseline
to which all three methods were compared in the following experiments includes only
the bounds checks that could not be eliminated by the SafeTSA CSE algorithm.

All of the runtime measurements were made while executing the benchmarks on a
1.5GHz G4 PowerMac with 1GB of RAM running a Linux 2.6.15 kernel. All bench-

6Symbolic constants were used for array bounds limits instead of passed in parameters where
possible

25

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

LU
Fa

ct

H
ea

pS
or

t

C
ry

pt
FF

T

Se
rie

s
SO

R
SM

M

M
ol

D
yn

Se
ar

ch

Ray
Tr
ac

er

M
on

te
C
ar

lo

0

5

10

15

20

25

30

B
o
u
n
d
s
 C

h
e
c
k
 I
n
s
tr

u
c
ti

o
n
s

ABCD

VDF

MBCE

Figure 12: Eliminated Bounds Checks (Static)

marks were run with the large data size where possible. They were repeated at least 75
times, each iteration with a fresh virtual machine. The first 15 results were discarded,
and any analysis was performed over the remaining runs.

5.1 Removed bounds checks

The number of bounds checks removed is an important metric when comparing bounds
check elimination algorithms. Figure 12 shows, for each benchmark, the number of
bounds checks removed by each elimination method

In all but one benchmark, our MBCE method removes all of the bounds checks
removed by ABCD and VDF. In seven out of eleven of the benchmarks, it removes
more bounds checks.

In the MolDyn (particle simulation) benchmark, both ABCD and VDF incorrectly
remove the bounds check from code that looks similar to the following:

for (int i=0; i < a.length; i += 2) {
a[i] = ...

}

In this code, both ABCD and VDF eliminate the bounds check for the store to
a[i]. This is unsound, however, because if a.length is the maximum integer value
(2,147,483,647), an arithmetic overflow would occur when two is add to i, changing it
from a.length-1 (2,147,483,646) to a.length+1 (-2,147,483,648). When this occurs,
the next store to a[i] will violate the lower bound of the array.7 Thus, ABCD and
VDF’s failure to account for arithmetic overflow makes them unsound, and MBCE
would subsume a sound variant of ABCD or VDF.

The better performance of MBCE can be explained with the successful mix of
speculation, load elimination and rectangular array analysis, which enables less con-
servative bounds check analysis, and the more powerful analyzer, e.g., non-difference
constraints in LUFact.

7In the actual benchmark execution, of course, this never happens, but it would require a much
more sophisticated analysis than MBCE, ABCD, or VDF to determine this soundly.

26

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

LU
Fa

ct

H
ea

pS
or

t

C
ry

pt
FF

T

Se
rie

s
SO

R
SM

M

M
ol

D
yn

Se
ar

ch

Ray
Tr
ac

er

M
on

te
C
ar

lo

0%

20%

40%

60%

80%

100%

%
 O

f
B

o
u
n
d
s
 C

h
e
c
k
 E

x
e
c
u
ti

o
n
s

ABCD

VDF

MBCE

Figure 13: Eliminated Bounds Checks (Dynamic)

As a second set of results we extracted the dynamic number of bounds check
executed during a benchmark run. This number better reflects the effect of the
bounds check removal: the number of removed bounds check instructions weighs
every instruction equally, whereas the dynamic count gives more importance to often-
executed ones.

The SafeTSA class loader modifies the program code so that a counter is in-
cremented before every bounds check instruction. Furthermore, every check for a
speculation is counted as one bounds check, except rectangular array speculations.
These count as as many bounds checks as length checks for sub-arrays have to be
performed. The difference between the dynamic count for the baseline and the count
for each of the three methods is used as the number of bounds check eliminated.
This number of bounds checks eliminated was then used to compute the percentage
of dynamic bounds checks removed relative to the baseline. The results are shown in
Figure 13.

The results differ from the static count. In most cases, they indicate that our
speculations captured most or at least a significant number of the frequently executed
bounds checks. Of special note are LUFact and MolDyn, where MBCE removes almost
all checks and ABCD and VDF fail to make a significant impact.

Exceptions are Heapsort, FFT and Search, where most of the removed bounds
checks are outside the hot path. HeapSort has a main loop that repeatedly doubles
the loop counter. This would require a more powerful analysis than linear constraints
allow. However, even then the code is not safe because of overflow issues and would
need very involved speculations. FFT has a similar loop, as well as more complex
index expressions. Search uses array elements as indices to other arrays. Since MBCE
is purely intraprocedural, an analysis is impossible.

5.2 Influence of Different Optimization and Analysis Passes

The MBCE system consists of several different passes, including common subexpres-
sion elimination (CSE), our constraint analysis system (CAS), load elimination (LE),
speculation (SPEC), and induction variable substitution (IVS). These are employed

27

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

LU
Fa

ct

H
ea

pS
or

t

C
ry

pt
FF

T

Se
ri
es

SO
R

SM
M

M
ol
D
yn

Se
ar

ch

Ra
yT

ra
ce

r

M
on

te
C
ar

lo

0

10

20

30

40

B
o
u
n
d
s
 C

h
e
c
k
 I
n
s
tr

u
c
ti

o
n
s CSE

CAS

LE

SPEC

IVS

Figure 14: Static contributions

together to remove more bounds checks than any one could individually. It is in-
teresting to evaluate which phases contribute how much to the final result. The
cumulative contribution to the number of bounds checks eliminated from enabling
each pass is shown in in Figure 14.8 It should be noted that which phase bounds
checks are attributable is somewhat order-dependent, because some bounds checks
require a combination of phases before they can be eliminated, and others may be
able to be independently eliminated by multiple phases.)

Note that common subexpression elimination is able to eliminate a significant
number of bounds checks in several benchmarks, without any price at the consumer
side. This is the case when an element of an array is repeatedly accessed. A good
example is the particle simulation MolDyn. Each particle is an element of a large
array. A particle update is a loop over all other particles, computing force influences
on it. To compute a single force, the other particle is accessed nine times in a row.
Common subexpression elimination is able to reduce this to only one access check per
particle.

However, in most cases, the majority of the checks is removed by the rest of the
system. In all cases, MBCE itself removes a significant part of the bounds checks,
usually about a third to a half. In four benchmarks, namely LUFact, Crypt, Search
and MonteCarlo, load elimination and speculation add another significant number.
Note, that load elimination is usually an enabling factor for speculation and does not
show up well by itself. In Crypt, induction variable substitution finally adds another
significant number of eliminated bounds checks.

Note that IVS can be beneficial on its own. However, in our benchmarks the
loop variable ranges over one array, while the induction variable indexes another.
Coterminous loop speculation is thus necessary to remove the checks even after the
induction variable has been analyzed.

In most cases, common subexpression elimination simplifies the program, but does
not have a significant effect on the dynamic bounds check elimination numbers (as
shown in Figure 15). Only FFT and MolDyn have the above-mentioned structure,

8The counts in Figure 14 are higher than those in Figure 12 because the counts in Figure 14
include the bounds checks due to CSE, which were already eliminated in the baseline of Figure 12.

28

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

LU
Fa

ct

H
ea

pS
or

t

Cry
pt FF

T

Se
rie

s
SO

R
SM

M

M
ol

D
yn

Se
ar

ch

Ray
Tr

ac
er

M
on

te
Car

lo

0%

20%

40%

60%

80%

100%

%
 O

f
B

o
u
n
d
s
 C

h
e
c
k
 E

x
e
c
u
ti

o
n
s

CSE

CAS

LE

SPEC

IVS

Figure 15: Dynamic contributions

and CSE is able to remove many bounds checks in the hot program path. The bounds
checks removed in the other benchmarks typically reside in the initialization routine
or outside of loops, so are not executed often enough to influence the statistics.

CAS and speculation are accountable for the majority of the eliminated bounds
checks. In three benchmarks, namely Series, SOR and RayTracer, CAS adds the most
significant amount, whereas speculation is dominant in LUFact, SparseMatMult and
MonteCarlo.

IVS only plays a significant role in one of our benchmarks, Crypt. However, it is
the single-most important factor, pushing the percentage of removed bounds checks
from less than five percent to nearly seventy.

5.3 Just-in-time compile time

All three approaches (ABCD, VDF, and MBCE) perform some computation in the
runtime system. In the case of ABCD, the whole analysis takes place at runtime. VDF
performs a dataflow-based verification, while MBCE both verifies annotations and
specializes program code at runtime. These actions result in some JIT compilation-
time overhead. We examined the compile times reported by JikesRVM. The percent-
age of time spent in the bounds check elimination against the overall compile time
(of the benchmark classes) is shown in figure 16.

In all cases, the elimination effort presents a minor impact on compile time, with
a peak of 7.4% in LUFact, and an average of 2.4%. ABCD and VDF perform slightly
better overall, with averages of 1.6% and 1%, respectively. Additionally, note that
in all of our benchmarks, compile time makes up an insignificant part of the overall
runtime. So 7.4% of compilation-time is less than one millionth of the entire execution
time.

The overall impact of bounds check elimination for our system is higher than that
of ABCD and VDF. However, this is compensated by the fact that MBCE removes
a higher number of bounds checks in most cases. As the next section will show, this
extra effort always at least pays for itself, and allows a significant speedup in several
cases.

29

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

LU
Fa

ct

H
ea

pS
or

t

Cry
pt FF

T

Se
rie

s
SO

R
SM

M

M
ol

D
yn

Se
ar

ch

Ray
Tr

ac
er

M
on

te
Car

lo

0%

1%

2%

3%

4%

5%

6%

7%

8%

%
 O

f
JI
T
-C

o
m

p
il
a
ti

o
n
 T

im
e

ABCD

VDF

MBCE

Figure 16: JIT-time Cost as Percentage of JIT compile time

LU
Fa

ct

H
ea

pSor
t

Cry
pt

FF
T

Ser
ie

s
SO

R
SM

M

M
ol

D
yn

Sea
rc

h

Ray
Tr

ac
er

M
on

te
Car

lo

0

1

2

3

4

5

T
im

e
 (

m
s
)

/
B

o
u
n
d
s
 C

h
e
c
k

ABCD

VDF

MBCE

Figure 17: JIT-time overhead per eliminated bounds check

30

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

LU
Fa

ct

H
ea

pS
or

t

C
ry

pt
FF

T

Se
ri
es

SO
R

SM
M

M
ol
D
yn

Se
ar

ch

Ra
yT

ra
ce

r

M
on

te
C
ar

lo

0%

5%

10%

15%

S
p
e
e
d
u
p
 o

v
e
r

b
a
s
e
li
n
e

ABCD

VDF

MBCE

Full

Figure 18: Runtime Speedup

As an alternative perspective, it is interesting to examine the average time per
eliminated bounds check. This metric normalizes the overall time over the number of
eliminated bounds checks, which equalizes time differences because of higher work-
load. With that, it turns out that ABCD is the most expensive with 1.35ms per
bounds check, MBCE needs 1.07ms, and VDF 0.8ms (per-benchmark information is
available in Figure 17). While ABCD is a very fast algorithm, it suffers from hav-
ing to check every bounds check in the program code. VDF and our system can
annotate which bounds checks can be removed and do not have to attempt an unsuc-
cessful analysis. A prime example is the Search benchmark. Out of the 82 bounds
checks, only three can be eliminated by ABCD (MBCE removes seven), but still has
to analyze all of them, generating a significant overhead.

5.4 Runtime results

The resulting speedup of array bounds check elimination depends on the type and
programming style of an application. If the annotator is able to find proofs for bounds
checks in hot program paths, the elimination of bounds checks can be very effective,
assuming that the runtime system supports the necessary speculations.

Executing the code without any bounds checks gives an upper bound of the achiev-
able speedup through bounds check elimination. Therefore we compare the speedup
achieved by our framework with this value to examine the efficiency of our implemen-
tation. In general, of course, simply removing all bounds checks does not conform to
the Java Language Specification, and can produce unsafe code. (In the absence of
ArrayOutOfBoundsException’s, a program could freely access memory by accessing
an array with an out-of-bounds index.) The benchmarks examined do not exhibit this
behavior, since all array accesses are within the correct bounds, so are not affected.
The resulting speedups are reported in Figure 18.

As expected from the elimination statistics, MBCE performs better than ABCD
and VDF. In all cases, MBCE achieves at least as much of a speedup as the other
systems. In eight out of eleven cases, MBCE performs better. In three cases, namely
LUFact, SOR and MolDyn, MBCE performs significantly better, with a peak 16%

31

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

speedup in SOR.
Note that in almost all cases a good result in the dynamic bounds check removal

statistics results in a near-optimal speedup. This is especially visible in the LUFact,
SOR and MolDyn benchmarks.

Crypt shows that even a significant number of static removed bounds checks does
not ensure a resulting speedup. A more complex specializer is necessary to achieve
significant speedups here, since some analysis-enabling speculations had to be rejected
by our simple implementation.

The Series benchmark has somewhat anomalous behavior. Despite MBCE being
able to eliminate nearly all bounds checks, the performance of the benchmark does not
improve significantly. In this case, the main factor of the execution time is actually
numerical computation, not the array access. This means that bounds check removal
is never able to improve performance much, as as can be seen by the equally low
speedup when all bounds checks are removed.

6 Related Work

Array bounds analysis has a long history. In 1977, Suzuki and Ishihata described a
theorem prover that was able to derive the necessary loop invariants to prove certain
assertions (such as, an index being within array bounds) [53]. The next year, Cousot
and Halbwachs described a method for analyzing integer ranges using properties of
convex polyhedrons to solve linear constraints; one of the intended applications of the
analysis is array bounds checks [17]. More recent work on array bounds check analysis
includes a symbolic bounds analysis for C programs using linear programming to solve
a systems of linear inequality constraints [48], a bounds checker for Fortran programs
[42], an abstract interpretation framework for certifying correct safe array accesses [8]
and speculative bounds check elimination for Java [59].

Given the breadth of existing work on bounds check elimination, we will focus
our discussion on those works related to our speculative analysis, and those related
to our verification system, and existing systems for elimination of bounds checks in
Java applications.

6.1 Program Specialization

Program specialization is a well-studied topic [50, and references therein]. DyC [27]
and others use annotations to guide the specialization process, but rely on program-
mers to annotate source files. Calpa [35] automates this by profiling a representative
input. A key difference from our work is their reliance on constant values, whereas our
system speculates on relationships among program variables and symbolic constants,
helping in the removal of array bounds checks.

Würthinger et al. [59] have developed a bounds check elimination mechanism for
use in the HotSpot JIT compiler. It works by identifying simple patterns in the
source code for which bound checks are unnecessary or for which speculation can
be used. Their speculation operates in a manner similar to our approach, but their
algorithm is intended as a runtime optimization and is thus less comprehensive then
ours. It is only based on difference constraints, which reduces the complexity of the
analysis. There are several bounds checks in our benchmarks that can be eliminated
with general linear constraints, but not with difference constraints. Furthermore their

32

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

pattern set is more restricted than our current implementation. While our system
can be easily extended to include any new analysis to find speculations, Würthinger
et al.’s algorithm can only use light-weight techniques adapted for runtime use.

6.2 Analysis of Linear Inequality Constraints

Our constraint analysis system (CAS) algorithm can be described as a variant of
the Fourier-Motzkin Elimination method [39, 20] for determining the satisfiability
of systems of linear inequality. CAS extends Fourier-Motzkin elimination by (1)
recording elimination steps to create a proof, and (2) incorporating special φ- and
π-coupling constraints that allow constraints corresponding to different control flow
paths and values variables take in different loop iterations to be combined into a single
system of constraints over extended-SSA variables.

Fourier-Motzkin Elimination has previously been used in the context of array
bounds check elimination in Xi and Pfenning’s [60] work on dependent type systems.
In their system, the type checking process generates a set of linear inequality con-
straints that are solved using Pugh and Wonnacott’s variant of Fourier-Motzkin Elim-
ination [45]. The type system requires program annotations (primarily, the signature
of recursive functions, which would be the equivalent of loop invariants for imper-
ative programs). This contrasts with our system, where cycle-reduction involving
φ-coupling constraints serves to automatically identify appropriate loop invariants.

Systems of inequalities can also be framed as a linear programming and solved
using other standard linear programming algorithms such as Simplex [19] or Kar-
markar’s interior points algorithm [30]. Cousot and Halbwachs [17] used a variant of
the Simplex algorithm in an abstract interpretation to update a convex polyhedron
(represented as linear equality and inequality constraints and as a frame) that de-
notes the set of combinations of values variables can take simultaneously at different
program points. This analysis was used by Dor et al. [22] in the C String Static
Verifier (CSSV) to detected buffer overflows in C programs. In contrast to this ab-
stract interpretation approach which requires the solving of many linear programs to
recalculate the polyhedra at different program points until a fixed point is reached,
Ganapathy et al. [25] reduce buffer overflows detection to a single linear program-
ming problem but, they do so by sacrificing soundness and flow-sensitivity. CAS, in
contrast, is able to solve a single problem in a single constraint system that includes
flow-sensitive information in the form of φ- and π-constraint directions. Rugina and
Rinard [48]’s intraprocedural algorithm is also able to reduce the problem of bound-
ing variable ranges to a singe system of constraints, specifically a linear programming
problem over the coefficients of polynomials describing the bounds (rather than over
the program variables), but this reduction requires that the variables be positive (or
at least bound a priori by a known constant–an interprocedural positivity analysis is
used for this). CAS does not have this restriction.

None of these systems using linear programming solvers have been applied to
Java or optimization within JIT compilers. In this context, JIT-optimization-time is
important, and the ability to efficiently verify CAS’s proofs is important.

In the last few years, Satisfiability Modulo Theories (SMT) solvers have built
on Satisfiability [21]. These extend techniques used for Boolean Satisfiability (SAT)
solvers to automatically solve formulas consisting of conjunctions of terms from dif-
ferent theories. Two commonly supported theories that could be applied to bounds

33

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

check elimination are difference arithmetic and linear arithmetic. Most SMT solvers
do not output a verifiable proof, but a few, including CVC3 [7], Fx7 [38], and veriT
[12] can. In these systems, proof complexity and verification cost can be an issue
sometimes even exceeding the cost of initially determining if the formula is satisfiable
[38]. Even after applying rewriting techniques to reduce overhead, the verification
times are measured in seconds [38] compared to milliseconds for verification in our
system. Even with more efficient, verification, using SMT solvers formulating the
bounds check problem as a a single formula would require finding the appropriate
invariants externally (e.g., [52, 31]). In contrast, CAS is able to automatically find
and prove appropriate loop invariants through its handling of cycle-reduction for φ-
functions constraints.

6.3 Verifiable Bounds Check Elimination

The concept of annotating programs with proofs of various properties that could
then be verified was explored as part of Necula’s dissertation on Proof-Carrying Code
(PCC) [41, 40]. Proof-carrying code was based on first-order logic, and is thus more
general than the linear inequality framework used in our work [56]. The certifying
compiler used with proof carrying code was capable of performing and proving the
safety of several compiler optimizations including bounds check elimination [40]. The
Special J compiler extended proof-carrying code to support the translation of Java
programs into x86 assembly language [16].

We have taken some inspiration from proof-carrying code, but our work is more
focused: array bounds checks rather than program type safety, and linear constraints
of integers rather than first order logic. Our framework allows us to integrate with an
existing Java virtual machine and continue to benefit from its machine-independence
and dynamic class loading capability. The tighter focus makes our approach a direct
replacement for runtime array bounds-check elimination. In addition, like the pro-
posed virtual machine for proof-carrying code from Franz et al. [23], our approach
should result in shorter, simpler proofs, and faster verification times than those based
on a complete proof carrying code framework. Another difference is that our an-
notations are an optional addition to a type-safe mobile code format, and so unlike
proof-carrying code, can be safely ignored by non-supporting virtual machines.

Other PCC approaches to verifying program analyses have also been designed
based on iterative data flow analysis and abstract interpretation. Rose’s work on
Lightweight bytecode verification [47] transported the fixed point of the prior iter-
ative bytecode verification algorithm as additional information in the bytecode file.
Variations of that work were later adopted, first, as stack maps in the Sun’s embed-
ded system offering (the Kilobyte Virtual Machine of the Java 2 Micro edition) and,
later, split verification in the Java 5 virtual machine. A generalization of this concept
to other data flow analyses was described by Haldar [29], and Amme et al. [5] built
a framework for transporting verifiable dataflow analysis results with SafeTSA pro-
grams. Chen and Kandemir [15] developed a method (referred to in the experimental
results section as VDF), which utilizes the fixed point of an iterative dataflow analysis
to split bounds check elimination between a producer and consumer phases, providing
the same benefits of reduced overhead during JIT compilation as our system. Unlike
our system, however, their system relies on a limited form of difference constraints
(rather than general linear inequalities) and does not consider arithmetic overflow.

34

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

In a similar vein, Albert et al. [1] introduced Abstraction Carrying Code based on
the CiaoPP abstract interpretation system for the Ciao Constraint Logic Program-
ming System. The abstract interpreter takes a program and an abstract domain and
produces a certificate containing an ‘answer table’ that approximates the abstract
semantics of the program and analysis results as the fixed point of the abstract in-
terpretation process. The code consumer is then able to check the correctness of this
analysis by using a single-pass version of the abstract interpreter. The system then
uses a trusted VCGen module to extract a verification condition that is then checked
to see if the execution of the code does not violate the safety property. A founda-
tional approach to proof-carrying code from certified abstract interpretation is taken
by Besson et al. [8], who use the Coq Proof Assistant system to validate specialized
certificate checkers against the formal operational semantics and safety policy of the
program. This reduces the amount of code that needs to be trusted (and standardized)
while still allowing for efficient verification of abstract interpretation over specialized
abstract domains. Their system is also different in that it transports sparse “strate-
gies” for reconstructing the analysis solution. Beson et al. [8] applied their framework
to an interval analysis for a bytecode language. The bytecode language contains only
a subset of the features found in standard Java bytecode, and so their analysis does
not need to handle the complexities of identifying which array bounds checks can be
optimized (it shows either that they are all safe or reports the program as unsafe),
precise exception semantics, parameters, fields, or arithmetic overflow.

6.4 Static Bounds Check Elimination for Java

There have been several additional works addressing the array bounds check problems
in Java.

Moreira et al. [36] used heavy-weight loop-based transformations and optimiza-
tions to optimize bounds checks in scientific applications; their goal was to provide a
traditional static compiler for Java programs that provides performance approaching
that of traditional optimizing compilers for Fortran, so their approach does not sup-
port just-in-time compilation and is not a general solution to the Java bounds check
problem.

The ABCD algorithm [11] provides global bounds check elimination based on
extended-SSA form and difference constraints. It is quite efficient but has some
limitations since it can only obtain difference constraints that can be overlayed onto
the SSA graph. The ABCD paper also discusses how the ABCD algorithm could be
extended to partially redundant bounds checks by identifying sufficient conditions for
the bounds check to be safe. This would be needed to be coupled with something
like our speculation mechanism in order to correctly support Java’s precise exception
semantics. The ABCD algorithm implicitly assumes that variables are unbounded
integers. Extending ABCD to check for arithmetic overflow would be possible, but
may significantly impact the algorithm’s efficiency. Menon et al. [33] extended the
ABCD algorithm to produce optimized programs augmented with verifiable proof
variables. The result is quite similar to our claims and proof obligations, but the
verifier would be required to make judgements about facts (similar to our claims) using
integer linear programming instead of checking an explicit proof; although verification
performance was not reported by Menon et al. [33], we expect that integer linear
programming would be slower than our approach.

35

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Qian et al. [46] use an iterative dataflow analysis based on difference constraints to
annotate bytecode with an indication of which bounds checks are unnecessary. Their
framework also included an interprocedural array field and rectangular array analysis
that would enable it to eliminate some of the same bounds that are enabled in our
system through load elimination and rectangular array speculation. In contrast to our
work, however, there is no mechanism to verify that the annotations are correct and
remain correct during dynamic class loading, and thus the method is not compatible
with standard Java Virtual Machine safety guarantees and functionality.

The elimination of bounds checks with producer-side CSE was possible because
the base SafeTSA representation provides special types to facilitate the producer-
side removal of duplicate bounds checks [55]. As seen in the experiment results of
this article, a multiphase bounds check elimination method can improve precision
significantly over those bounds checks that can be eliminated through CSE.

Several bounds check elimination techniques are based on identifying simple pat-
terns of loops (that cover, e.g., the common case of a loop in which the loop variable
is used as the array index and the loop condition compares that variable to the ar-
ray’s length). An example of such an algorithm is Zhao et al.’s [62], which is quite
efficient during JIT compilation. Yessick and Jones [61] also proposed a method of
bounds check elimination for restricted loop forms but it relies on annotations to
reduce runtime overhead. Similarly, Amme and Gampe [4] developed a method for
bounds check elimination on simple loop forms that can safely be applied during the
production of an extended form SafeTSA. These techniques are subsumed by more
general techniques including ABCD, VDF, or MBCE.

7 Conclusions

In this article, we presented a multiphase bounds check elimination method (MBCE)
for the removal of array bounds check in Java. Our method consists of an annotator
on the producer side that analyzes a program for redundant checks and annotates
the program code with proofs certifying that fact, and a verifier on the consumer
side, which uses the annotated proofs to verify the redundancy of bounds checks and
finally removes them.

This architecture makes a shift of analysis time from the consumer to the pro-
ducer possible, allowing us to implement multiple analysis steps that complement
each other. The system applies five analysis and transformation passes during code
production: Common subexpression elimination (CSE) simplifies the code at no cost
for the consumer. Load elimination reduces the precision lost due to indirection in
object-oriented designs. Induction variable substitution (IVS) analyzes optimized
mathematical code. A speculator identifies potential runtime checks that increase
the number bounds checks that can be eliminated. Finally, the Constraint Analysis
Systems (CAS) uses the information derived in the previous steps, evaluates bounds
checks for redundancy, and generates proofs that those checks are unnecessary. Dur-
ing loading and JIT compilation, the verifier checks the proofs generated by CAS and
IVS, a code transformer performs load elimination, and the specializer instantiates
multiple versions of methods guarded by different speculations. At runtime, spe-
cialized versions of methods are selected by dynamically evaluating the appropriate
guards.

36

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

Each pass provides distinct benefits. CSE is cheap, but does not necessarily have a
direct impact on runtime. The basic CAS algorithm, and the proofs it generates, form
a baseline that performs as well as or better than ABCD [11] and VDF [15]. Load
elimination, speculations, and IVS eliminate additional bounds checks at the cost of
JIT-time overhead (from additional proofs and code transformations) and execution
overhead (from the dynamic guards).

Experimental evaluation using the Java Grande Forum benchmark suite shows
that the MBCE approach our can translate to significant speedups. (The SOR bench-
mark runs 16% faster than the baseline.) Despite a slightly higher JIT-time overhead,
benchmark execution of the MBCE optimized code performed as well as or better than
ABCD and VDF. For six benchmarks, optimization with the MBCE method system
resulted in execution times significantly better than ABCD or VDF.

8 Acknowledgements

This research was supported in part by the Air Force Research Laboratory under grant
F30602-02-1-0001 and the National Science Foundation under grants CCF-0846010,
EIA-0117255, CCF-0702527, and CNS-0855247.

References

[1] Elvira Albert, Germán Puebla, and Manuel Hermenegildo. Abstraction-carrying
code. In 11th International Conference on Logic for Programming Artificial In-
telligence and Reasoning (LPAR’04), volume 3452 of Lecture Notes in Computer
Science, pages 380–397, 2005.

[2] Zahira Ammarguellat and W. L. Harrison, III. Automatic recognition of induc-
tion variables and recurrence relations by abstract interpretation. In PLDI ’90:
Proceedings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation, pages 283–295, New York, NY, USA, 1990. ACM.

[3] Wolfram Amme, Niall Dalton, Michael Franz, and Jeffery von Ronne. SafeTSA:
A type safe and referentially secure mobile-code representation based on static
single assignment form. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI’2001), volume 36, pages 137–147. ACM
Press, June 2001.

[4] Wolfram Amme and Andreas Gampe. Eliminating bound checks through ranges.
Vordiplom Project, Informatik, Friedrich-Schiller-Universität Jena, 2005.

[5] Wolfram Amme, Marc-André Möller, and Philipp Adler. Data flow analysis as a
general concept for the transport of verifiable program annotations. In Proceed-
ings of the 5th International Workshop on Compiler Optimization meets Com-
piler Verification (COCV 2006), volume 176(3) of Electronic Notes in Theoretical
Computer Science, pages 97–108, 2007.

[6] Wolfram Amme, Jeffery von Ronne, and Michael Franz. Ssa-based mobile code:
Implementation and empirical evaluation. ACM Trans. Archit. Code Optim.,
4(2):Article 13, 2007.

37

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

[7] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Rajeev Alur and Doron A. Peled, editors, Pro-
ceedings of the 16th International Conference on Computer Aided Verification
(CAV ’04), volume 3114 of Lecture Notes in Computer Science, pages 515–518.
Springer-Verlag, July 2004. Boston, Massachusetts.

[8] Frédéric Besson, Thomas Jensen, and David Pichardie. Proof-carrying code from
certified abstract interpretation and fixpoint compression. Theoretical Computer
Science, 364(3):273 – 291, 2006.

[9] Johnnie Birch, Robert van Engelen, and Kyle Gallivan. Value range analysis of
conditionally updated variables and pointers. In In proceedings of Compilers for
Parallel Computing (CPC) (2004, pages 265–276, 2004.

[10] William Blume and Rudolf Eigenmann. The range test: A dependence test for
symbolic, non-linear expressions. In Proceedings of Supercomputing ’94, Wash-
ington D.C, pages 528–537, 1994.

[11] Rastislav Bod́ık, Rajiv Gupta, and Vivek Sarkar. Abcd: eliminating array
bounds checks on demand. In PLDI ’00: Proceedings of the ACM SIGPLAN
2000 conference on Programming language design and implementation, pages
321–333, New York, NY, USA, 2000. ACM Press.

[12] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal
Fontaine. verit: An open, trustable and efficient smt-solver. In Automated De-
duction CADE-22, Lecture Notes in Computer Science, pages 151–156, 2009.

[13] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey. A bench-
mark suite for high performance Java. Concurrency: Practice and Experience,
12(6):375–388, May 2000.

[14] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,
Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John
Whaley. The jalapeño dynamic optimizing compiler for java. In JAVA ’99:
Proceedings of the ACM 1999 conference on Java Grande, pages 129–141, New
York, NY, USA, 1999. ACM.

[15] Guangyu Chen and Mahmut Kandemir. Verifiable annotations for embedded java
environments. In CASES ’05: Proceedings of the 2005 international conference
on Compilers, architectures and synthesis for embedded systems, pages 105–114,
New York, NY, USA, 2005. ACM Press.

[16] Cristopher Colby, Peter Lee, George Necula, Fred Blau, Mark Plesko, and Ken-
neth Cline. A certifying compiler for java. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementa-
tion, pages 95–107, New York, NY, USA, 2000. ACM.

[17] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL ’78: Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages
84–96, New York, NY, USA, 1978. ACM Press.

38

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

[18] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[19] GB Dantzig. Linear Programming and extensions. Landmarks in Mathematics
and Physics. Princeton University Presss, 1998.

[20] George B. Dantzig and B. Curtis Eaves. Fourier-motzkin elimination and its
dual. Journal of Combinatorial Theory, Series A, 14(3):288–297, 1973.

[21] Leonardo de Moura, Bruno Dutertre, and Natarajan Shanka. A tutorial on
satisfiability modulo theories. In Computer Aided Verification, volume 4590 of
Lecture Notes in Computer Science, pages 20–36, 2007.

[22] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv: towards a realistic tool for
statically detecting all buffer overflows in c. In PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and imple-
mentation, pages 155–167, New York, NY, USA, 2003. ACM.

[23] Michael Franz, Deepak Chandra, Andreas Gal, Vivek Haldar, Fermı́n Reig, and
Ning Wang. A portable virtual machine target for proof-carrying code. In IVME
’03: Proceedings of the 2003 workshop on Interpreters, virtual machines and
emulators, pages 24–31, New York, NY, USA, 2003. ACM.

[24] Andreas Gampe, Jeffery von Ronne, David Niedzielski, and Kleanthis Psarris.
Speculative improvements to verifiable bounds check elimination. In Proceedings
of the International Conference on Principles and Practice of Programming In
Java (PPPJ 2008). ACM Press, 2008.

[25] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David Vitek.
Buffer overrun detection using linear programming and static analysis. In CCS
’03: Proceedings of the 10th ACM conference on Computer and communications
security, pages 345–354, New York, NY, USA, 2003. ACM.

[26] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley Professional, third edition, 2005.

[27] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J.
Eggers. DyC: an expressive annotation-directed dynamic compiler for C. Theo-
retical Computer Science, 248(1–2):147–199, October 2000.

[28] Mohammad Reza Haghighat. Symbolic analysis for parallelizing compilers. PhD
thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1995.

[29] Vivek Haldar. Verifying data flow optimizations for just-in-time compilation.
Technical Report 2002-118, Sun Labs, October 2002.

[30] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4(4):373–395, 1984.

39

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

[31] K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. In
Programming Languages and Systems, volume 3780 of Lecture Notes in Computer
Science, pages 119–134, 2005.

[32] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

[33] Vijay S. Menon, Neal Glew, Brian R. Murphy, Andrew McCreight, Tatiana Sh-
peisman, Ali-Reza Adl-Tabatabai, and Leaf Petersen. A verifiable ssa program
representation for aggressive compiler optimization. In POPL ’06: Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 397–408, New York, NY, USA, 2006. ACM Press.

[34] Samuel P. Midkiff, José E. Moreira, and Marc Snir. Optimizing array reference
checking in java programs. IBM Systems Journal, 37(3):409–453, 1998.

[35] Markus Mock, Craig Chambers, and Susan J. Eggers. Calpa: a tool for automat-
ing selective dynamic compilation. In MICRO 33: Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture, pages 291–302, New
York, NY, USA, 2000. ACM.

[36] José; E. Moreira, Samuel P. Midkiff, and Manish Gupta. From flop to megaflops:
Java for technical computing. ACM Trans. Program. Lang. Syst., 22(2):265–295,
2000.

[37] José E. Moreira, Samuel P. Midkiff, Manish Gupta, Pedro V. Artigas, Marc Snir,
and Richard D. Lawrence. Java programming for high-performance numerical
computing. IBM Sysmtems Journal, 39(1):21–56, 2000.

[38] Michal Moskal. Rocket-fast proof checking for smt solvers. In Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2008), volume
4963 of Lecutre Notes in Computer Science, pages 486–500, 2008.

[39] Theodore S. Motzkin. Beiträge zur Theorie der Linearen Ungleichungen. Inau-
gural dissertation, University of Basel, 1936. Azriel: Jerusalem.

[40] George Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
1998.

[41] George C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 106–119, New York, NY, USA, 1997. ACM Press.

[42] Thi Viet Nga Nguyen and Francois Irigoin. Efficient and effective array bound
checking. ACM Trans. Program. Lang. Syst., 27(3):527–570, 2005.

[43] David Niedzielski, Jeffery von Ronne, Andreas Gampe, and Kleanthis Psarris. A
verifiable, control flow aware constraint analyzer for bounds check elimination.
In Statis Analysis: Proceedings of the 16th International Static Analysis Sym-
posium, SAS 2009, volume 5673 of Lecture Notes in Computer Science, pages
137–153, August 2009.

40

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

[44] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into
practice. In Proceedings of the Symposium on Principles of Programming Lan-
guages (POPL’1997), ACM SIGPLAN Notices, pages 146–159, Paris, France,
January 1997. ACM SIGACT and SIGPLAN, ACM Press.

[45] William Pugh and David Wonnacott. Eliminating false data dependences using
the omega test. In PLDI ’92: Proceedings of the ACM SIGPLAN 1992 conference
on Programming language design and implementation, pages 140–151, New York,
NY, USA, 1992. ACM.

[46] Feng Qian, Laurie J. Hendren, and Clark Verbrugge. A comprehensive approach
to array bounds check elimination for java. In CC ’02: Proceedings of the 11th
International Conference on Compiler Construction, pages 325–342, London,
UK, 2002. Springer-Verlag.

[47] Eva Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-4):303–
334, 2003.

[48] Radu Rugina and Martin C. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. ACM Trans. Program. Lang. Syst.,
27(2):185–235, 2005.

[49] A. Schrijver. Theory of Linear and Integer Programming. Wiley and Sons, 1986.

[50] Ajeet Shankar, S. Subramanya Sastry, Rastislav Bod́ık, and James E. Smith.
Runtime specialization with optimistic heap analysis. In OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications, pages 327–343, New York, NY, USA,
2005. ACM.

[51] Yixin Shou, Robert A. van Engelen, Johnnie Birch, and Kyle A. Gallivan. Toward
efficient flow-sensitive induction variable analysis and dependence testing for loop
optimization. In ACM-SE 44: Proceedings of the 44th annual Southeast regional
conference, pages 1–6, New York, NY, USA, 2006. ACM.

[52] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Vs3: Smt solvers
for program verification. In 21st International Conference on Computer Aided
Verification (CAV 2009), 2009.

[53] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound checker.
In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 132–143, New York, NY, USA, 1977.
ACM Press.

[54] Robert van Engelen. Efficient symbolic analysis for optimizing compilers. In CC
’01: Proceedings of the 10th International Conference on Compiler Construction,
pages 118–132, London, UK, 2001. Springer-Verlag.

[55] Jeffery von Ronne, Wolfram Amme, and Michael Franz. An inherently type-safe
ssa-based code format. Technical Report CS-TR-2006-004, Computer Science,
The University of Texas at San Antonio, 2006.

41

Gampe, et al. Multiphase Bounds Check Elimination CS-TR-2010-001

[56] Jeffery von Ronne, Andreas Gampe, David Niedzielski, and Kleanthis Psarris.
Safe bounds check annotations. Concurrency and Computations: Practice and
Experience, 21(1), 2009. DOI: 10.1002/cpe.1341.

[57] Michael Wolfe. Beyond induction variables. SIGPLAN Not., 27(7):162–174,
1992.

[58] Peng Wu, Albert Cohen, Jay Hoeflinger, and David Padua. Monotonic evolution:
an alternative to induction variable substitution for dependence analysis. In ICS
’01: Proceedings of the 15th international conference on Supercomputing, pages
78–91, New York, NY, USA, 2001. ACM.

[59] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. Array
bounds check elimination for the java hotspot client compiler. In PPPJ ’07:
Proceedings of the 5th international symposium on Principles and practice of
programming in Java, pages 125–133, New York, NY, USA, 2007. ACM.

[60] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through de-
pendent types. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, pages 249–257, New York,
NY, USA, 1998. ACM Press.

[61] Donald E. Yessick and Joel Jones. Removal of bounds checks in an annotation
aware jvm. In Proceedings of the IEEE SoutheastCon, 2002, pages 226–228.
IEEE, 2002.

[62] Jisheng Zhao, Ian Rogers, Chris Kirkham, and Ian Watson. Loop parallelisation
for the jikes rvm. In Proceedings of the Sixth International Conference on Parallel
and Distributed Computing (PDCAT’05), pages 35–39. IEEE Computer Society,
2005.

42

